
Deep into Hypersphere: Robust and Unsupervised Anomaly Discovery in
Dynamic Networks

Xian Teng1, Muheng Yan1, Ali Mert Ertugrul1,2, Yu-Ru Lin1∗,
1 School of Computing and Information, University of Pittsburgh, USA

2 Graduate School of Informatics, Middle East Technical University, Turkey
{xian.teng, yanmuheng, ertugrul, yurulin}@pitt.edu

Abstract
The increasing and flexible use of autonomous sys-
tems in many domains – from intelligent trans-
portation systems, information systems, to busi-
ness transaction management – has led to chal-
lenges in understanding the “normal” and “abnor-
mal” behaviors of those systems. As the sys-
tems may be composed of internal states and re-
lationships among sub-systems, it requires not only
warning users to anomalous situations but also pro-
vides transparency about how the anomalies de-
viate from normalcy for more appropriate inter-
vention. We propose a unified anomaly discov-
ery framework “DeepSphere” that simultaneously
meet the above two requirements – identifying the
anomalous cases and further exploring the cases’
anomalous structure localized in spatial and tem-
poral context. DeepSphere leverages deep autoen-
coders and hypersphere learning methods, having
the capability of isolating anomaly pollution and
reconstructing normal behaviors. DeepSphere does
not rely on human annotated samples and can gen-
eralize to unseen data. Extensive experiments on
both synthetic and real datasets demonstrate the
consistent and robust performance of the proposed
method.

1 Introduction
An rapid growth of intelligent networked systems have been
deployed in a range of environments, such as intelligent trans-
portation systems, smart grid, cloud computing facility, and
business transaction management systems. These systems are
usually of high complexity since they are composed of many
interdependent and time-varying components. For example,
intelligent transportation systems incorporates sensors, analy-
sis and communication technologies into vehicles and infras-
tructures to implement real-time traffic monitoring and infor-
mation communications among sub-components.

For such networked systems, a central task is to under-
stand the systems’ normal patterns, and automatically iden-
tify anomalous behaviors, so as to conduct timely and spe-

∗Corresponding author.

Figure 1: Illustration of the two-level anomaly discovery task.

cific interventions to guarantee system stability [Cheng et al.,
2016]. In particular, when system faults occur, it is required
to not only deliver a warning signal of current system abnor-
mality, but also provide a certain level of transparency re-
gards the nested information, i.e., which components are in
anomalous operation, when the anomalies occur, and how the
observed measurements deviate from normal values. Signifi-
cant research efforts have been devoted to anomaly detection
in such dynamic networked systems (commonly described
by dynamic graphs). The works in [Schölkopf et al., 2000;
Breunig et al., 2000] are aimed at detecting anomalous graph
snapshots by comparing the consecutive graphs using a dis-
tance function; however, lower-level anomalies nested in the
systems are neglected (no transparency). More recent works
have focused on the low-level anomaly discovery, includ-
ing identifying anomalous clusters [Chen and Neill, 2014;
Rozenshtein et al., 2014] and individual components, i.e.,
nodes and edges [Teng et al., 2017]. These works, however,
cannot provide a preliminary judgment in terms of the entire
system’s performance (no warning).

To deal with the task mentioned above, we formulate a
new “inductive and two-level anomaly discovery” problem.
Firstly, the goal is two-level – we seek to learn a model that
can satisfy both the warning and transparency requirements.
Secondly, the model should be inductive, i.e., it can be gener-
alized to unseen test data. Figure 1 illustrates the basic idea:
given a set of observation samples for a dynamic graph –
each represented as a tensor characterizing the internal spatio-
temporal structure (Figure 1(a)), the model should inductively
identify (i) anomalous sample cases and (ii) nested anomalies
within the anomalous tensors (Figure 1(b)).

To resolve this problem, we propose a unified and un-

yu-ru lin
This is the author's version of the following paper:

Teng, X., Yan, M., Ertugrul, A., Lin, Y.-R. (2018). "Deep into Hypersphere: Robust and Unsupervised Anomaly Discovery in Dynamic Networks." In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018) 

The final publication is available at the IJCAI electronic server (http://www.ijcai.org).컭



supervised anomaly discovery framework, called “Deep-
Sphere”, that leverages deep autoencoder along with hyper-
sphere learning technique. Deep autoencoders have demon-
strated their strong capability in learning non-linear represen-
tations that capture the major patterns of input data [LeCun et
al., 2015]; However, the unlabelled input data are not neces-
sarily outlier-free, i.e., it might be polluted by some unknown
anomalous samples, referred as “anomaly pollution”. Unfor-
tunately, anomaly pollution might interfere learning process
and therefore severely reduce the neural network’s quality.
We introduce hypersphere learning to overcome this prob-
lem – it allows for careful exclusion of anomaly pollution by
learning a compact boundary separating normal and abnor-
mal data points. Our unified architecture, DeepSphere, can
not only perceive system fault to trigger warning signal, but
also discover the specific nested anomalies within the system.
The key contributions of this work include:

1. We develop a new inductive, two-level anomaly discov-
ery problem in dynamic graphs, which is critical for ap-
propriate management of anomalous situations in intel-
ligent networked systems.

2. We propose a novel approach DeepSphere, which is a
unified, end-to-end and unsupervised learning process
that does not require either outlier-free or labeled train-
ing data. To the best of our knowledge, this is the first
work that incorporates hypersphere learning into a deep
learning architecture.

3. We conduct extensive experiments on both synthetic and
real datasets, showing that DeepSphere outperforms the
state-of-the-art baseline methods regards the two sub-
tasks.

The paper is organized as follows. In section 2, we briefly
review the relevant work. In section 3, we provide problem
definition and annotations. We describe the proposed Deep-
Sphere in section 4, and discuss our experimental results in
section 5. Finally, the paper is concluded in section 6.

2 Related Work
2.1 Anomaly Detection in Dynamic Networks
Recent years have witnessed a research shift in focus to
anomaly detection in dynamic graphs (rather than static
graphs) [Ranshous et al., 2015]. Based on application needs,
detection targets can range from case-level anomaly detec-
tion to nested (lower-level) anomaly discovery. For example,
GraphScope is a case-level detection method that finds the
discontinuity change points in a stream of graphs [Sun et al.,
2007]; EventTree+, NetSpot and NPHGS are proposed to find
medium-level anomalies, i.e. abnormal subgraphs or clusters
[Chen and Neill, 2014; Rozenshtein et al., 2014; Mongiovi et
al., 2013]; and Time-Series Hyperesphere Learning (TSHL)
seeks to spot microscopic anomalies, i.e. nodes or edges in
the graphs [Teng et al., 2017]. However, none of these tech-
niques has the capability to perform anomaly mining from
both high-level and low-level perspectives. Besides, the fea-
tures that have been used are also different. EventTree+ uses
aggregated measurements, NPHGS relies on derived statis-
tics, and TSHL utilizes the linear embeddings extracted from

a low-dimensional space. However, they might not be suit-
able for capturing the complex relationship among the input
features. Our DeepSphere architecture is able to learn the po-
tential hidden nonlinear features to encode rich information
from the dynamic input data, which is more efficient and ef-
fective in practical applications.

2.2 Deep Learning in Anomaly Detection
Many approaches based on deep learning techniques have
been proposed for anomaly detection [Zhou and Paffen-
roth, 2017; Chalapathy et al., 2017; Malhotra et al., 2015;
Malhotra et al., 2016; Erfani et al., 2016], we mainly review
two types of neural networks used as building blocks, i.e.,
deep autoencoders and recurrent neural networks.

Deep Autoencoder. Deep autoencoder is an unsupervised
learning architecture that has been employed in learning low-
dimensional nonlinear features across many domains [LeCun
et al., 2015]. Recently two anomaly detection techniques
have been proposed based on deep autoencoder, namely Ro-
bust Deep Autoencoder (RDA) [Zhou and Paffenroth, 2017]
and Robust Convolutional Autoencoder (RCAE) [Chalapa-
thy et al., 2017]. Both methods inherit the nonlinear repre-
sentation capability of autoencoder, along with the anomaly
discrimination ability of robust principal component analy-
sis (RPCA). In specific, they split the input matrix into a
low-rank matrix and an outlier matrix, assuming that the out-
lier matrix should be sparse; besides, the input split results
in a loss function that is unfortunately not computationally
tractable. Whereas DeepSphere does not have any require-
ments towards anomaly sparsity; more importantly, it is a
unified end-to-end learning model which does not require any
optimization algorithm development.

Recurrent Neural Networks. Recurrent neural network
(RNNs) are artificial neural network designed for processing
time-series and sequence data [Liu et al., 2016]. Therefore,
it becomes a natural choice to be used for developing new
methods to detect anomalies in time-series data. For example,
Malhotra et al. develop two methods, i.e. LSTM-AD [Mal-
hotra et al., 2015] and EncDec-AD [Malhotra et al., 2016],
based on Long Short-Term Memory (LSTM) for anomaly de-
tection in time series data. However, both models are super-
vised methods which require clean normal inputs in training
process. Whereas we attempt to train an unsupervised model
to cope with the lack-of-label and potentially polluted data.
DeepSphere achieves this goal adding a hypersphere learn-
ing component to preclude outliers and accordingly maintain
high quality reconstruction of normal behaviors.

3 Problem Definition
In this section, we introduce definitions, notations and prob-
lem formulation.

Definition 3.1. Dynamic Graph. A dynamic graph is de-
fined as G(t) = {V,E, x(t)}, where V denotes vertex set
(with number N ), E denotes edge set, and x(t) is a map-
ping function that associates each edge eij with a time series
{xij(t), t = 1, ..., T}. As shown in Figure 1(a), one obser-
vation case of G(t) can be described by a three-order tensor
X ∈ RN×N×T , and the lateral slices along time dimension



(a)

(b) (c)

Figure 2: Illustration of DeepSphere architecture.

are the graph’s adjacency matrices at different time steps, de-
noted as {Xt, t = 1, ..., T}. A collection of cases can be
denoted as {X k, k = 1, 2, ...}.

Definition 3.2. Inductive & Two-level Anomaly Discov-
ery. For a dynamic graph G(t), assuming that there is a set
of historical observations (i.e., the training data) {X k, k =
1, ...,m}, we determine to train a model based on the training
data, and then inductively apply the trained model to unseen
data (i.e., test data) {X k, k > m}. In particular, the task is
of two levels (Figure 1(b)): (i) Case-level anomaly detection:
identifying which observation cases (i.e., tensors) in the test
data, say {X u, u > k} ⊂ {X k, k > m}), are anomalous; (ii)
Nested anomaly discovery: discovering the anomalous cells
nested within the anomalous tensors in test data, and calcu-
late how they deviate from the expected normal behaviors.

Actually, the first task is aimed at dealing with the warning
requirement: an anomaly score s(X k) is computed for each
case X k conveying a signal whether the system is likely to
be normal or not; the second task is aimed at providing some
transparency: a “difference” tensor ∆(X k) would be com-
puted, describing how the anomalous tensor deviate from the
expected normal tensor.

4 Method
In this section, we first introduce some preliminary knowl-
edge, and then describe our approach DeepSphere.

4.1 Preliminary
Hypersphere Learning. Hypersphere learning is originally
proposed in the problem of data description (i.e. the char-
acterization of a dataset) [Tax and Duin, 2004]. A good de-
scription is defined as a compact boundary (also called hy-
persphere) that covers all normal data points but includes no
superfluous space. By learning such a compact hypersphere,

outliers can be detected and precluded. As shown in Fig-
ure 2(b), the hypersphere can be characterized by a centroid
a and a radius r, and the set of data points is denoted as
{zk, k = 1, ...,m}. The error function that needs to be mini-
mized is:

Φ(a, r) = r2 + γ
∑
k

ξk, (1)

with the constraints:

‖zk − a‖2 ≤ r2 + ξk, ξk ≥ 0, ∀i, (2)

where ξk are slack variables to allow the possibility of anoma-
lies in the dataset. The distance from zk to a is not strictly
smaller than r2 but larger distance should be penalized (the
data points outside the boundary are anomaly pollution). Be-
sides, the parameter γ controls the trade-off between sphere
volume and penalization. By minimizing Eq.1, the parame-
ters, i.e. centrold a and radius r, can be obtained (note that
ξk is not part of the parameter set because it is an auxiliary
variable rather than our learning goal). Our proposed Deep-
Sphere model is equipped with a hypersphere learning com-
ponent which plays a critical role in isolating and penalizing
anomaly pollution contained in the input data.

LSTM Autoencoder. Deep autoencoders usually contain
two parts: the encoder αθ and the decoder βφ, which are non-
linear mapping functions implemented via neural networks
with parameters θ and φ, respectively. The encoder maps in-
put data into the low-dimensional hidden layer z = αθ(X),
while the decoder maps from the hidden layer into the output
layer to reconstruct input X̂ = βφ(z). The encoder αθ and
decoder βφ can be implemented by different types of neu-
ral networks, such as feedforward non-recurrent neural net-
works or recurrent neural networks. Our DeepSphere is built
on LSTM recurrent neural networks (Figure 2(a)), in order
to better capture the potential temporal dependency and the
structural relationship within dynamic graphs.

4.2 The Proposed DeepSphere
Motivation. To resolve our two-level research problem, we
derive our method DeepSphere by integrating autoencoders
with hypersphere learning in a mutual supportive manner. On
one hand, DeepSphere inherits the anomaly separation capa-
bility of hypersphere learning, helping to improve the qual-
ity of autoencoders (more dedicated to the normal patterns);
on the other hand, DeepSphere bears the advantages of au-
toencoders – being able to capture the spatio-temporal depen-
dencies among components and across timesteps, to flexibly
learn a nonlinear feature representation, and to reconstruct
the normal behaviors from potentially anomalous input data.
The high-quality nonlinear representations learned by autoen-
coder, in turn, helps hypersphere learning to better distinguish
anomalous cases. Next we will show that DeepSphere com-
bines the two parts by designing hypersphere learning as a
special layer (parameterized by a and r) in a unified deep
neural network architecture, without necessity of developing
any ad-hoc learning mechanism.

DeepSphere Architecture. Figure 2(a) shows the overall
DeepSphere architecture. A sample case X is sliced into a



series of matrices {Xt, t = 1, ..., T} corresponding to a se-
quence of graphs. They are fed into a LSTM encoder and
a series of internal states {ht, t = 1, ..., T} can be gener-
ated. The {ht} captures the information about the source se-
quence {Xt}, including short- and long-range dependencies.
To learn a more flexible dependency structure, we employ the
attention mechanism to allocate various attention to different
{ht} [Denil et al., 2012]:

z =
∑
t

ωtht, (3)

where z is the embedded representation, and ωt indicates at-
tention weights.

In the hidden space, we design a new layer called “hyper-
sphere learning” which learns a spherically shaped bound-
ary around the encoded representations {zk} to tell apart of
anomaly pollution (Figure 2(b)). Specifically, the inner struc-
ture of hypersphere learning layer (along with its inputs and
outputs) is displayed in Figure 2(c). The input is {zk}, the
two parameters r and a are denoted as nodes, the functions
used to calculate the distance d and outlier penalty ξ are taken
as two nonlinear neurons. To minimize the chance of accept-
ing anomalous cases, the objective function is defined as:

Φ = r2 + γ
m∑

k=1

ξk +
1

m

m∑
k=1

‖zk − a‖2. (4)

Here we strictly assume that all normal tensors should be
mapped onto the centroid a of the hypersphere, therefore we
add a new item (the 3rd item) minimizing the average dis-
tance between zk and a. Finally, the hypersphere learning
layer outputs Φ, d and r.

In the above learning process, the latent representations z
lying outside of the hypersphere with large distances tend to
be anomalous, while the ones lying inside of the hypersphere
of small distances are prone to be normal ones. We utilize
this knowledge to modify the reconstruction error for LSTM
autoencoder as follows (corresponding to “weighted recon-
struction error” in Figure 2(a)):

Ψ =
m∑

k=1

ηk‖X k − X̂ k‖2, (5)

where X k is reconstructed through LSTM decoder, and the
ηk indicates case-wise weights computed through a heuristic
function η(d, r). It should reward the latent representations z
lying near to a, while penalize (or even remove) anomalous
cases outside of the hypersphere. Please note that different
types of functions can be chosen for η(d, r) as long as it dis-
tinguishes z based on the boundary. Here we formulate it as
a nonlinear form:

η(d, r) =
1

τ

√
δ[r2 − d2] + ε, (6)

where δ = 1 if r2 − d2 ≥ 0, and δ = 0 otherwise; and
ε > 0 is a considerably small number to make the equation
differentiable for r = d; τ is the normalization parameter
τ =

∑
η(dk, r).

In summary, the overall objective function is the combina-
tion of the hypersphere component Φ and the panalized re-
construction difference Ψ:

min
Θ
F = min

Θ
{Φ + λΨ} (7)

where λ is the trade-off parameter between these two items,
and Θ = {a, r, ωt,θ,φ} is the parameter set containing the
hypersphere centroid a, the radius r, the attention weights ωt,
as well as the neural network parameters θ,φ for LSTM en-
coder and decoder. According to Eq.7, if λ is extremely large,
making hypersphere learning vanished, the model would de-
generate into an autoencoder (lose the ability to filter out out-
liers); if λ is extremely small, making reconstruction process
vanished, it would become a method particularly for case-
level detection (lose the ability to reconstruct normal pattern).

Training and Testing. Since every part of the DeepSphere
architecture is differentiable, the model can be trained in an
end-to-end manner by using the back propagation. In our
implementation, we select the Adam Optimizer to train our
model [Kingma and Ba, 2014]. As DeepSphere has been
trained, given a new unseen sample X k(k > m), we can
perform case-level anomaly detection by examining its dis-
tance towards a (taken as anomaly score s(Xk)) and make
decision accordingly. Besides, DeepSphere is able to re-
construct its normal behavior X̂ k even though X k is an
anomalous input. By computing the reconstruction difference
∆(X k) = X k − X̂ k, we can discover the nested anomalies
localized in temporal and spatial dimensions.

5 Experiments
5.1 Datasets
Synthetic Data. We generate synthetic data (ground truth
can be known) in order to conduct comprehensive perfor-
mance evaluation. Particularly, we will implement it from
the following four perspectives: (1) anomaly pollution: since
there is no guarantee for clean training data (i.e., it may be
polluted by anomalies), the level of anomaly pollution can
affect DeepSphere’s performance; (2) spatio-temporal local-
ity: anomalies usually appear clustered spatially or tempo-
rally. The variation between spatial locality or temporal lo-
cality could affect the detection; (3) nested anomaly extent:
the extent to which a data sample contains nested anomalies
could affect the detection; (4) data imbalance: the extent to
which the testing data contain anomaly cases can affect the
detection. We thus design the following process to simulate
these different conditions.

The data is generated by three steps: (i) randomly create
a graph structure, (ii) assign normal behaviors, and (iii) in-
sert anomalies. In step (iii), we first determine the fraction of
case-level anomalous tensors within the data (corresponding
to anomaly pollution in training data, and data imbalance in
test data), and then plant the nested anomalous cells local-
ized inside the tensor X . To guarantee spatial or temporal
locality, a random walk (RW) is employed to select the target
cells in the tensor. The walker starts from an arbitrary cell
(i, j, t), with a probability p it would stay at the current time
step t (walking over graph), or with a chance of 1−p it would



jump to the previous or the next time steps. The parameter p
controls the spatio-temporal locality – traversing more over
graph or more across time. The walker would stop when sat-
isfying a predefined stop condition, which is characterized by
the fraction of visited cells in the tensor. RW stop condition
controls the nested anomalies extent.

Real-word Data. To demonstrate DeepSphere’s applica-
tion in diverse domains, we apply it on three realistic datasets.

A. New York City (NYC) Taxi Trips. The NYC taxi trip
data1 is a public transportation dataset. Each piece of record
includes a trip’s detailed information, such as pick up time,
pick up location, drop off time and drop off location etc. We
extract a subset of trips (more than 41 million) from July 2016
to December 2016 and construct a transportation graph. In
this graph, vertices represent zones (e.g. Midtown Center and
Upper East Side) and edges represent taxi transportation. We
remove the insignificant zones with few number of trips, and
finally obtain 48 zones left. We can detect anomalous trans-
portation phenomena by mining this dataset.

B. Tweets & News Collection. We use a semantic dataset
called “HERMEVENT” which was released in this paper
[Crescenzo et al., 2017]. HERMEVENT is created from a
large corpus containing tweets and news articles collected
from both Twitter and major Italian news papers, spanning
from December 2016 to March 2017. Based on the corpus,
the authors build a set of temporal graphs where the vertices
represent entities (i.e. phrases) and the edges encode the co-
occurrence frequency of two phrases. In this paper, the Ital-
ian phrases are translated into English for the convenience of
understanding; and we extract a subgraph (containing 160 en-
tities) as our analysis target. We rely on this data to identify
reported news that correspond to events happened in the real
world.

C. Restaurant Video. The restaurant video data is a set
of frames (images) captured in a restaurant, which has been
used for background modeling and foreground activity de-
tection [Chalapathy et al., 2017]. Background means the
relatively static scenes, while foreground activity might be
customers coming, talking at reception and leaving. Unlike
the general foreground-background separation task in com-
puter vision research [Braham and Droogenbroeck, 2016;
Xu et al., 2014], here we consider the problem of detecting
foreground activities without using additional image process-
ing or background learning.

5.2 Baseline Methods and Evaluation Metrics
We compare our DeepSphere model with the following ap-
proaches: Robust Autoencoder (RAE) [Zhou and Paffen-
roth, 2017], LSTM Autoencoder (LSTM-AE) [Baytas et al.,
2017], Time-Series Hyperesphere Learning (TSHL) [Teng et
al., 2017], Local Outlier Factor (LOF) [Breunig et al., 2000],
and One-Class SVM [Schölkopf et al., 2000]. DeepSphere,
RAE and LSTM-AE are deep learning based methods that
perform nonlinear representation learning and can do nested
anomaly discovery; TSHL is a linear technique also equipped
with hypersphere learning component; LOF and One-Class
SVM are two domain-independent approaches. For RAE, we

1http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

−5

0

0.2

0.4

0.6

0.8

1

4 8 12
Anomaly Pollution (%)

K
a
p
p
a

−5

0
0.2
0.4
0.6
0.8

1

1 2 3
RW Stop Condition (%)

K
a
p
p
a

−5

0

0.2

0.4
0.6

0.8

1

0.2 0.5 0.8
Jump Probability

K
a
p
p
a

−5

0
0.2
0.4
0.6
0.8

1

5 10 15 20 25
Data Imbalance (%)

K
a
p
p
a

(a) (b)

(c) (d)

DeepSphere
RAE
LSTM−AE
TSHL
LOF
OCC-SVM

Figure 3: Results of case-level anomaly detection described by
Kappa statistics.

have modified the base version to be a LSTM autoencoder in
order to make it compatible with the time series data.

We evaluate the methods’ performance in terms of two
tasks: (i) case-level anomaly detection, and (ii) nested
anomaly discovery. For the first task, we employ the Kappa
statistics as the evaluation metric: κ = (acc − accexp)/(1 −
accexp) to account for data imbalance effect. Here acc is
the calculated accuracy, while accexp is the expected accu-
racy. For the second task, we use root mean square error:

RMSE =
√

E(∆̂−∆)2. Here ∆̂ is the approximated
nested anomalies given by DeepSphere, and ∆ is the ground
truth difference injected in simulation process2.

5.3 Experimental Results.
Performance Comparison on Synthetic Data.
Figure 3 shows the performance comparison of different
methods in detecting case-level anomalies, in terms of the
four aspects mentioned above. The two hypersphere learn-
ing based approaches, DeepSphere and TSHL, perform the
best – both can detect almost all case-level anomalies un-
der all conditions. This is expected as the hypersphere learn-
ing component has better capability in dealing with anomaly
pollution in training data. LOF exhibits similar good perfor-
mance, but its performance declines drastically when chang-
ing the level of data imbalance (Figure 3(d)). Besides, One-
Class SVM displays negative Kappa values, implying that
its performance in the experiments is worse than random
guessing. A possible explanation for its poor performance
is the curse of dimensionality: One-Class SVM is demon-
strated to be very inefficient in producing decision surfaces
in high dimensional feature spaces [Khan and Madden, 2009;
Erfani et al., 2016]. Comparing DeepSphere with the other
two deep learning models, we can observe that our proposed
DeepSphere shows consistent better performance across dif-
ferent scenarios.

Figure 4 provides the performance of three deep learn-
ing models (i.e. DeepSphere, RAE, LSTM-AE) in dis-
covering nested anomalies, as TSHL, LOF, and One-Class
SVM cannot perform this task. We observe that DeepSphere

2Code is available at https://github.com/picsolab/
DeepSphere

https://github.com/picsolab/DeepSphere
https://github.com/picsolab/DeepSphere


0.00

0.01

0.02

0.2 0.5 0.8
Jump Probability

R
M

S
E

0.00

0.01

0.02

1 2 3
RW Stop Condition (%)

R
M

S
E

DeepSphere
RAE
LSTM AE

0.00

0.01

0.02

4 8 12
Anomaly Pollution (%)

R
M

S
E

0.00

0.01

0.02

0.03

15 20 25
Data Imbalance (%)

R
M

S
E

(a) (b)

(c) (d)

Figure 4: Results of nested anomaly discovery described by RMSE.

gives the lowest RMSE values in all scenarios. It main-
tains stable performance when varying anomaly pollution
and jump probability (Figure 4(a)(b)). DeepSphere’s per-
formance slightly declines when the size of nested anoma-
lies increases (Figure 4(c)), and when the data imbalance in-
creases (Figure 4(d)) – in both scenarios, fully capturing the
nested anomalies would be more challenging. In summary, in
our experiments DeepSphere shows a superior performance
in the nested anomaly discovery task, and holds comparably
the best performance in the case-level detection task. The
results also indicate that DeepSphere is more robust against
the changing nature of anomalies in the training data (e.g.,
anomaly pollution, spatio-temporal locality, nested anomaly
extent) or in the unseen data (data imbalance).

Case Studies on Real-World Data.

Figure 5: Decreased taxi trips on Thanksgiving day in Manhattan.

A. NYC Taxi Trips. Figure 5 shows the taxi transportation
snapshots for four consecutive time periods during Thanks-
giving day on November 24th, 2016 in Manhattan. Specif-
ically, Figure 5(a)(b) shows the taxi traffic flow under nor-
mal situation and during Thanksgiving respectively. Hue in-
dicates the level of incoming flow for the corresponding re-
gions. We can easily observe that there is a decline in taxi
transportation on Thanksgiving, especially for the busiest re-
gions (e.g. “Upper East Side” and “Midtown Manhattan”).
The ground truth change is reported in Figure 5(c), and our
detection results are provided in Figure 5(d). By comparing

Figure 6: Two events detected in HERMEVENT data. Italian has
been translated into English.

Figure 7: Two examples of foreground activity detection in restau-
rant video.

(c) and (d), we can see that our proposed DeepSphere model
is able to uncover the nested decline in taxi flows localized at
various time steps and in different sub-regions.

B. Tweets & News Collection. Figure 6 provides two
events detected by DeepSphere in HERMEVENT temporal
graphs: (a) the Kyrgyz man identified as the nightclub shooter
in Istanbul, on January 3rd, 2017; and (b) the inauguration
of Donald Trump as the 45th President of USA in Washing-
ton, D.C. on January 20th, 2017. Each day contains eight
snapshots showing the nested anomalies captured by Deep-
Sphere. By zooming the most anomalous one (9:00 AM -
12:00 PM), we can find a dotted cluster on the upper left
corner. This cluster suggests that a group of phrases has co-
appeared frequently on that day. To examine what the phrases
are, we also plot the node-edge diagram associated with the
cluster. Referring to this news article3, we can find that the
phrases – Istanbul, Turkey, Kyrgyz, Xinjiang and Uighurs –
are closely correlated with this event. In a similar way, we
can detect a compact cluster as the evidence of the second
event. The associated node-edge diagram is also formed by
many informative phrases, such as Settlement of the President
of USA, inauguration day, as well as relevant names – Don-
ald Trump, Hillary Clinton, Barack Obama, Michelle Obama,
Jared Kushner, Mike Pence, etc.

3http://palermo.gds.it/2018/01/31/spari-su-un-autobus-a-
palermo-proiettile-sul-vetro-nessun-ferito 795630/



C. Restaurant Video. Figure 7 reports the activity de-
tection results in the restaurant video data. Two activity in-
stances – people coming and leaving – are provided. The top,
middle and bottom rows represent normal situation, anoma-
lous situation and detected results separately. Without addi-
tional image processing steps, we can see that the foreground
activities are well captured by DeepSphere. The result sug-
gests that the DeepSphere has a broad application with tasks
similar to the anomaly discovery in dynamic graphs.

6 Conclusions
We propose a two-level inductive anomaly discovery task
in dynamic graphs, and develop a novel DeepSphere frame-
work based on deep autoencoders and hypersphere learning.
DeepSphere demonstrated better and robust performance than
baseline methods, and also exhibits a broad application in a
variety of domains (partially demonstrated by the real-world
experiments). As part of future work, we plan to (i) extend
our framework to exploit multiple data sources; and (ii) ex-
plore the problem of anomaly source detection in networks.

Acknowledgement
This work is part of the research supported from NSF
#1634944, #1637067, and #1739413.

References
[Baytas et al., 2017] Inci M. Baytas, Cao Xiao, et al. Pa-

tient subtyping via time-aware lstm networks. In SIGKDD,
pages 65–74. ACM, 2017.

[Braham and Droogenbroeck, 2016] Marc Braham and
Marc Van Droogenbroeck. Deep background subtraction
with scene-specific convolutional neural networks. In
IWSSIP, pages 1–4. IEEE, 2016.

[Breunig et al., 2000] Markus M. Breunig, Hans-Peter
Kriegel, et al. Lof: identifying density-based local
outliers. In SIGMOD, volume 29, pages 93–104. ACM,
2000.

[Chalapathy et al., 2017] Raghavendra Chalapathy,
Aditya K. Menon, and Sanjay Chawla. Robust, deep
and inductive anomaly detection. arXiv preprint
arXiv:1704.06743, 2017.

[Chen and Neill, 2014] Feng Chen and Daniel B. Neill. Non-
parametric scan statistics for event detection and forecast-
ing in heterogeneous social media graphs. In SIGKDD,
pages 1166–1175. ACM, 2014.

[Cheng et al., 2016] Wei Cheng, Kai Zhang, et al. Rank-
ing causal anomalies via temporal and dynamical analysis
on vanishing correlations. In SIGKDD, pages 805–814.
ACM, 2016.

[Crescenzo et al., 2017] Cristiano Di Crescenzo, Giulia
Gavazzi, et al. Hermevent: a news collection for emerging-
event detection. In WIMS, page 11. ACM, 2017.

[Denil et al., 2012] Misha Denil, Loris Bazzani, et al. Learn-
ing where to attend with deep architectures for image
tracking. Neural Computation, 24(8):2151–2184, 2012.

[Erfani et al., 2016] Sarah M. Erfani, Sutharshan Ra-
jasegarar, et al. High-dimensional and large-scale
anomaly detection using a linear one-class svm with deep
learning. Pattern Recognition, 58:121–134, 2016.

[Khan and Madden, 2009] Shehroz S. Khan and Michael G.
Madden. A survey of recent trends in one class classifica-
tion. In AICS, pages 188–197. Springer, 2009.

[Kingma and Ba, 2014] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[LeCun et al., 2015] Yann LeCun, Yoshua Bengio, and Ge-
offrey Hinton. Deep learning. Nature, 521(7553):436,
2015.

[Liu et al., 2016] Jun Liu, Amir Shahroudy, et al. Spatio-
temporal lstm with trust gates for 3d human action recog-
nition. In ECCV, pages 816–833. Springer, 2016.

[Malhotra et al., 2015] Pankaj Malhotra, Lovekesh Vig,
et al. Long short term memory networks for anomaly de-
tection in time series. In Proceedings, page 89. Presses
universitaires de Louvain, 2015.

[Malhotra et al., 2016] Pankaj Malhotra, Anusha Ramakr-
ishnan, et al. Lstm-based encoder-decoder for multi-sensor
anomaly detection. arXiv preprint arXiv:1607.00148,
2016.

[Mongiovi et al., 2013] Misael Mongiovi, Petko Bogdanov,
et al. Netspot: Spotting significant anomalous regions on
dynamic networks. In ICDM, pages 28–36. SIAM, 2013.

[Ranshous et al., 2015] Stephen Ranshous, Shitian Shen,
et al. Anomaly detection in dynamic networks: a survey.
Wiley Interdisciplinary Reviews: Computational Statistics,
7(3):223–247, 2015.

[Rozenshtein et al., 2014] Polina Rozenshtein, Aris Anag-
nostopoulos, et al. Event detection in activity networks.
In SIGKDD, pages 1176–1185. ACM, 2014.

[Schölkopf et al., 2000] Bernhard Schölkopf, Robert
Williamson, et al. Support vector method for novelty
detection. In NIPS, pages 582–588, 2000.

[Sun et al., 2007] Jimeng Sun, Spiros Papadimitriou, et al.
Graphscope: parameter-free mining of large time-evolving
graphs. In SIGKDD, pages 687–696. ACM, 2007.

[Tax and Duin, 2004] David M.J. Tax and Robert P.W. Duin.
Support vector data description. Machine Learning,
54(1):45–66, 2004.

[Teng et al., 2017] Xian Teng, Yu-Ru Lin, and Xidao Wen.
Anomaly detection in dynamic networks using multi-view
time-series hypersphere learning. In CIKM, pages 827–
836. ACM, 2017.

[Xu et al., 2014] Pei Xu, Mao Ye, et al. Dynamic back-
ground learning through deep auto-encoder networks. In
Multimedia Conference, pages 107–116. ACM, 2014.

[Zhou and Paffenroth, 2017] Chong Zhou and Randy C. Paf-
fenroth. Anomaly detection with robust deep autoen-
coders. In SIGKDD, pages 665–674. ACM, 2017.


	Introduction
	Related Work
	Anomaly Detection in Dynamic Networks
	Deep Learning in Anomaly Detection

	Problem Definition
	Method
	Preliminary
	The Proposed DeepSphere

	Experiments
	Datasets
	Baseline Methods and Evaluation Metrics
	Experimental Results.

	Conclusions



